1091

Transannularly Bridged Di-µ₂-thiotetraborane(10). Dynamics, *cis–trans*-Isomerism, Reversible Rearrangement: Bis(diboranyl) 'Butterfly' Structure

Herbert Binder,* Paraschos Melidis, Serdar Söylemez and Gernot Heckmann

Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, Germany

 B_4H_{10} reacts with bifunctional thiols to give transannularly bridged $H_2(\mu_2)_2S_2RBH(B_2H_5)$ which exist as *cis*-trans isomers; on cooling these compounds rearrange to *cis*-trans $H_2B(\mu_2)_2S_2RB_3H_6$.

Tetraborane(10) reacts with carboxylic acids by splitting off H_2 , displacement of 'BH₃', and coordination of the carboxylate group to form chelate-stabilized compounds of the type B_3H_6X , where $X = RCO_2$.^{1,2} It was shown that the primary reaction step is not initiated by the acidic H atom of the CO₂H group but by the carbonyl group. We now find that the B_4H_{10} -thiol system follows a similar reaction path. We report here on results of reactions between B_4H_{10} and bifunctional thiols. The reactions proceed through unstable addition compounds and yield by H_2 loss the title compounds *via* reaction (1).

$$B_{4}H_{10} + R(SH)_{2} \rightarrow B_{4}H_{8}(S_{2}R) + 2 H_{2}$$
(1)

$$1a; R = CH_{2}$$

$$b; R = (CH_{2})_{2}$$

$$c; R = (CH_{2})_{3}$$

$$d; R = 1,2-C_{6}H_{4}$$

The ¹¹B NMR spectra of **1a-d**[†] show at room temperature

two series of signals consisting of a doublet, a triplet and a sextet (1:1:2) indicative of two isomers (Fig. 1). The sextets, which exhibit considerably smaller ${}^{1}J({}^{11}B{}^{1}H)$ coupling con-

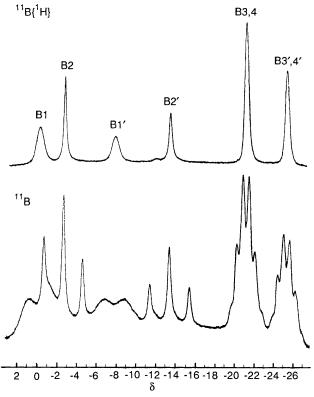
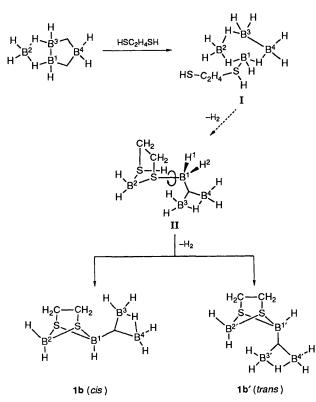
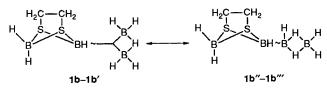



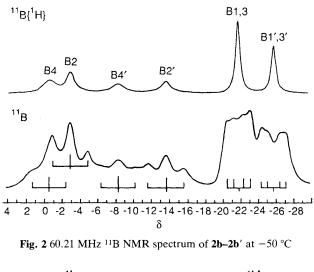
Fig. 1 60.21 MHz ¹¹B NMR spectrum of 1b-1b' at room temperature

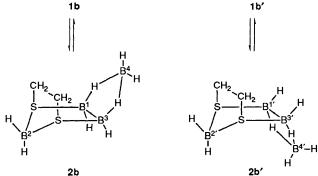

 $[\]dagger$ *Experimental data*: The ¹¹B, ¹H and ¹³C NMR spectra were recorded at 64.210, 200.132 and 50.323 MHz.

Preparation of **1a–d**: the appropriate dithiol **1a–d** was added at 15 °C to a solution of B_4H_{10} (5.5 mmol) in $CH_2Cl_2^2$ (0.4 mol dm⁻³). The reaction is complete after 30 min. Excess of B_4H_{10} was removed by evaporation to half bulk. The remaining reaction mixture was examined spectroscopically. The isomer ratios were determined from the clearly separated sextets of the ¹¹B NMR spectrum at room temperature. All isomers with the higher chemical shift (see Fig. 1) always appear with a lower intensity: **1a**: **1a**' 60: 40; **1b**: **1b**' 60: 40; **1c**: **1c**' 70: 30; **1d**: **1d**' 70: 30.

Side products: δ (¹¹B): **1a**: -16.7 (t), $[CH_2(SBH_2)_2]_2^5$ (5%), -19.6 (t), -26.7 (m) (5%), not identified; **1b**: none; **1c**: -14.5 (t) (5%), -18.5 (t) (5%), -25.5 (m) (10%), -29.5 (m) (10%), not identified; **1d**: 58.0 (d) C₆H₄S₂BH (10%), -25.0 (m) (3%), not identified.

Scheme 1 Reactions starting with the B_4H_{10} 'butterfly' structure and leading to the *cis-trans* isomers **1b-1b**' with the bis(diboranyl) structure




Scheme 2 Dynamics of the B₂H₅ in 1b-1b' or 1b''-1b'''

stants compared with the B–H coupling constants of the doublets or triplets, are associated with B_2H_5 groups in which all H atoms on the NMR time scale are subject to a rapid dynamic process. The structure of the reaction products **1a–d** cannot be derived from the 'butterfly' structure of B_4H_{10} by these parameters; a terminal or bridge H substitution on this structure should lead to a different shape of the ¹¹B NMR spectrum.

The ¹¹B NMR spectrum is consistent, however, with a bis(diborane) structure of $B_4H_{10}^{3.4}$ in which the opposite H bridge positions are substituted transannularly by a dithio group (Scheme 1). The primary reaction step is the adduct formation;‡ the succeeding H₂ split-off, rearrangement (μ_2 -S bridge formation), and renewed addition of the second SH group at B² yields the intermediate compound II with the opening of a H bridge. Compound II is the precursor for the *cis-trans* isomers **1b–1b'**. Rotation of the B₃H₇ group around the B–S bond in II allows the reaction of H¹ and H² with the SH group with H₂ cleavage, whereby **1b** or **1b'** are formed (*cis-trans* refers here to the position of the transannular RS₂ bridge opposite the B₂H₅ group). The dynamics of the B₂H₅ group can be illustrated by a rapid oscillation between the two limiting forms **1b–1b'** and **1b''-1b'''** (Scheme 2).

With 1b''-1b''', we succeeded in preparing a derivative of the hypothetical bis(diborane), a valence isomer of B_4H_{10} .

Scheme 3 Reversible rearrangement of the bis(diboranyl) structure of 1b-1b' into the 'butterfly' structure 2b-2b'

The rapid structural change is related to magnetic equivalence of the two boron atoms B^3 , B^4 and the five H atoms. The reorientation of the B_2H_5 group can be interpreted as a pseudorotation. From the ¹¹B NMR data it is not possible to differentiate between the *cis-trans* isomers. In order to find out whether one of the limiting structures is rigid at low temperatures, we recorded ¹¹B NMR spectra as a function of temperature. Surprisingly, none of the limiting forms could be detected. Instead, we found that an intramolecular rearrangement occurred upon cooling resulting in two new *cis-trans* isomers.

A temperature-dependent equilibrium is reached which at -50 °C lies completely on the side of the new isomers. The ¹¹B NMR spectrum shows two new multiplet series at -50 °C which contain two triplets each and a doublet of doublets (1:1:2), as shown in Fig. 2.

These multiplets clearly indicate the transannularly bridged 'butterfly' structure of B_4H_{10} which appears in a *cis* and *trans* form (Scheme 3).

The doublets of doublets result from the coupling of the boron atoms B^1 and B^3 or $B^{1'}$ and $B^{3'}$ with a terminal and a bridging H atom. The triplets are caused by the coupling of the boron atoms B² and B⁴ and B²' and B⁴' with two terminal H atoms each; the couplings of the two bridging H atoms with B4 and $B^{4'}$ are not resolved. The rearrangement leads to a larger ring: the four-membered ring B_2S_2 in 1b-1b' enlarges to a five-membered ring B₃S₂ in 2b-2b'. An analogously structured derivative is the recently described compound $H_2B(\mu_2$ - $NMe_2)_2B_3H_6$ ⁵ the only known B_4H_{10} derivative with bridge substituents. On warming to room temperature, the same type of spectrum as in Fig. 1 appears again. This is indicative of a reversible rearrangement, i.e., a reversible ring expansionring contraction process. Heating to 90 °C leads to no further change. The experimentally demonstrated rearrangement of the bis(diboranyl) structure into the 'butterfly' structure

[‡] The addition compound Bu^tSH·B₄H₁₀ was detected by ¹¹B NMR spectroscopy: δ -7.2, -35.8 (3:1); the compound undergoes a dynamic process.

1b–1b' \rightarrow **2b–2b'** is an indication that the theoretically calculated transformation of the hypothetical valence isomer $(B_2H_5)_2$ into the known 'butterfly' structure of B_4H_{10} is realistic.

The proof of the structure and the characterization of the compounds **1a-d** is based on ¹¹B, ¹³C and ¹H NMR spectroscopy as well as mass spectrometric investigations.§ After

removing the solvent, partial polymerization occurs; crystalline products could not be obtained yet. The reaction products of longer-chain dithiols, beginning with butane-1,4-dithiol, show only broad, unresolved signals in the ¹¹B NMR spectrum; no monomers could be identified mass spectrometrically; a similar situation exists with **1c** under solventfree conditions.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Received, 12th March 1991; Com. 1/01149I

References

- 1 H. Binder, B. Brellochs, B. Frei, A. Simon and B. Hettich, *Chem. Ber.*, 1989, **122**, 1049.
- 2 B. Brellochs and H. Binder, Z. Naturforsch. Part B, 1988, 43, 648.
- 3 M. L. McKee and W. N. Lipscomb, Inorg. Chem., 1981, 25, 4453.
- 4 M. L. McKee, Inorg. Chem., 1986, 25, 3545.
- 5 D. F. Gaines and J. C. Kunz, Inorg. Chem., 1988, 27, 1839.
- 6 H. Binder, W. Diamantikos, K. Dermentzis and H.-D. Hausen, Z. Naturforsch. Part B, 1982, 37, 1548.

[§] Spectroscopic data: (numbering of the atoms according to Fig. 1 and Fig. 2) ¹¹B NMR (CD₂Cl₂): **1a** (302 K): δ −8.9 (d, J_{BH} 100 Hz, B¹H), −12.2 (t, J_{BH} 130 Hz, B²H₂), −23.6 (sex, J_{BH} 35 Hz, B²B⁴H₅); **1a'** (302 K): δ −9.7 (d, J_{BH} 92 Hz, B¹/H), −14.4 (t, J_{BH} 100 Hz, B²/H₂), −23.9 (sex, J_{BH} 35 Hz, B³B⁴/H₅); mass spectrometry **1a**−1a' m/z: 126 ({M − 4H} +, 22%); ¹¹B NMR (CD₂Cl₂): **1b** (302 K): δ −0.1 (d, J_{BH} 118 Hz, B¹H), −2.6 (t, J_{BH} 126 Hz, B²H₂), −21.2 (sex, J_{BH} 39.6 Hz, B³B⁴H₅), **1b'** (302 K): δ −7.8 (d, J_{BH} 12.5 Hz, B¹/H), −13.4 (t, J_{BH} 126.4 Hz, B²/H₂), −25.3 (sex, J_{BH} 37.8 Hz, B³/B⁴/H₅); ¹³C {¹H} NMR (CD₂Cl₂): **1b** (302 K): δ 34.05 (CH₂), **1b'** (302 K): δ 32.95 (CH₂); ¹H NMR (CD₂Cl₂): **1b** (302 K): δ 2.85 (s, CH₂); mass spectrometry: **1b**−1b' m/z: 140 ({M − 4H} +, 70%); ¹¹B NMR (CD₂Cl₂): **2b** (220 K): δ −0.5 (t, J_{BH} 113 Hz, B⁴H₂), −2.8 (t, J_{BH} 128 Hz, B²H₂), −21.7 (dd, J_{BH} 120.4 Hz, B¹H₁B³H, J_{BH} 42 Hz, B¹H_bB³H_b); **2b'** (220 K): δ −8.7 (t, J_{BH} 132 Hz, B⁴/H₂), −13.6 (t, J_{BH} 117 Hz, B²/H₂), −25.8 (dd, J_{BH} 140 Hz, B¹H_tB³/H_t, J_{BH} 35 Hz, B¹/H_bB³/H_b).